
US 20150318984A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2015/0318984 A1 

Knop et al. (43) Pub. Date: Nov. 5, 2015 

(54) INITIALIZATION VECTORS GENERATION (30) Foreign Application Priority Data 
FROM ENCRYPTION/DECRYPTION 

Apr. 23, 2014 (EP) .................................. 14165671.O 
(71) Applicant: International Business Machines 

Corporation, Armonk, NY (US) Publication Classification 

(72) Inventors: Felipe Knop. Poughkeepsie, NY (US); (51) Int. Cl. 
Anil Kurmus, Rueschlikon (CH): H04L 9/00 (2006.01) 
Alessandro Sorniotti, Rueschlikon G06F2L/72 (2006.01) 
(CH); Yuri Volobuev, San Ramon, CA (52) U.S. Cl. 
(US) CPC ................ H04L 9/008 (2013.01); G06F 21/72 

(2013.01) 
(21) Appl. No.: 14/748,581 (57) ABSTRACT 

A computer-implemented method of encryption of several 
(22) Filed: Jun. 24, 2015 units of a computerized system, wherein each of the units 

comprises data, includes generating distinct initialization 
vectors, or IVs, for the units, and storing the generated IVs; 
and for each unit of the several units: accessing a stored IV 

(63) Continuation of application No. 14/677,109, filed on corresponding to the unit; and encrypting the unit according 
Apr. 2, 2015. to the accessed IV and an encryption key. 

Data encryption Key (Sta) 

Related U.S. Application Data 

S13: Encrypt unit according to S2O: Generate IWs 
accessed IV and encryption key 

S14: Another Unit to Encrypt? Encrypted Unit 

Yes 
NO 

l Selected Unitf S12: Access corresponding IW 

Accessed IW 

  

  



Patent Application Publication Nov. 5, 2015 Sheet 1 of 5 US 2015/0318984 A1 

Data encryption Key 

S13: Encrypt unit according to 
accessed IV and encryption key S2O: Generate IWs 

S14. Another Unit to Encrypt? Encrypted Unit 

Accessed IW 

FIG. 1 

  

  

  

    

  

  

  



Patent Application Publication Nov. 5, 2015 Sheet 2 of 5 US 2015/0318984 A1 

(sad) 
s24. Instantiate Iy-generating cipher 

wrw wr w w w w w w w w w w w w ww 

w 

r r - 

Tweak 
Instantiated IV-generating cipher Uit identifier IW generation key 

S28: A WS awailable? 

S21 Selectext it 

- 
S2. Is W for that unit 

available if cache 

No 

FIG. 2 

  

  

  



Patent Application Publication Nov. 5, 2015 Sheet 3 of 5 US 2015/0318984 A1 

S2O. Generate IVs 

S32. Access corresponding IV 

Accessed IV Data encryption Key 

S34. Another Unit to decrypt? 

S31: Select next unit 

FIG. 3 

  

  

    

  

    

  

  



Patent Application Publication Nov. 5, 2015 Sheet 4 of 5 US 2015/0318984 A1 

16 bytes 16 bytes 
--------------------------------------------\\\\\\\\\\\------- *r-------- -------\\\\\\\ as--------------------- -3. 

AAAABBBBCCCCDDDD AAAABBBBCCCCDDDD 

8 bytes 16 bytes 
e 

KELRKTOEL FRP ORD KELKTOELERP ORD 

FIG. 4 

6 bytes 6 bytes 

OxO LOO 3 O 4 OXO O. O 3 OS 

traxxYYYYYYYYY - - - - - - - - - - ------------J s-ra-C-...----------, - 

OFEEA32 CD 8AIIE O - 29 OOODEA1A83. I 

FIG. 5 

--- 16 bytes -------- 8 bytes 
X------------------------- 

OXO 1 O2 O 3 O4 OXO LO3O3 O 5 

<--------------------------. ---------------------------------- 

OXFEEA329 D3A1 E OX3 COCODEALA832 I. 

FIG. 6 



Patent Application Publication Nov. 5, 2015 Sheet 5 of 5 US 2015/0318984 A1 

100 s 130 
  



US 2015/03 18984 A1 

INITIALIZATION VECTORS GENERATION 
FROM ENCRYPTION/DECRYPTION 

DOMESTIC AND FOREIGN PRIORITY 

0001. This application is a continuation of U.S. patent 
application Ser. No. 14/677,109, filed Apr. 2, 2015, which 
claims priority to European Patent Application No. 
14165671.0, filed Apr. 23, 2014, and all the benefits accruing 
therefrom under 35 U.S.C. S 119, the contents of which in its 
entirety are herein incorporated by reference. 

BACKGROUND 

0002 The invention relates in general to the field of 
encryption and decryption. In particular, it is directed to 
encryption/decryption methods using initialization vectors or 
values that are generated for every storage block. 
0003. The General Parallel File System (GPFS) will 
include native encryption support starting from GPFS 4.1. 
One of the supported encryption modes is CBC-IV. When 
encrypting a file using the CBC-IV mode, unique initializa 
tion values (IVs) are generated for every “storage block” that 
is encrypted (512 bytes in the case of GPFS, though this size 
can vary) to ensure randomized encryption. Because storing 
this IV would be prohibitively expensive on a filesystem 
(there is no extra space in a disk sector), the IVs have to be 
generated on the fly. Many, if not all related encrypting file 
systems adopt that same approach, see for instance M Hal 
crow, eCryptfs: an enterprise class encrypting file system, 
http://pic.dhe.ibm.com/infocenter/lnxinfo/v3rom0/topic/li 
aax/halcrow-05.pdf. 

SUMMARY 

0004. A computer-implemented method of encryption of 
several units of a computerized system, wherein each of the 
units comprises data, includes generating distinct initializa 
tion vectors, or IVs, for the units, and storing the generated 
IVs; and for each unit of the several units: accessing a stored 
IV corresponding to the unit; and encrypting the unit accord 
ing to the accessed IV and an encryption key. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0005 FIG. 1 is a flowchart illustrating high-level opera 
tions of a method of encryption, according to embodiments of 
the invention; 
0006 FIG. 2 is a flowchart illustrating high-level opera 
tions of a method for generating initialization vectors, as 
involved in embodiments; 
0007 FIG. 3 is a flowchart illustrating high-level opera 
tions of a method of decryption, according to embodiments; 
0008 FIG. 4 illustrates an electronic codebook encryption 
process applied to two data blocks; 
0009 FIG. 5 illustrates a basic initialization vectors gen 
eration process for two data blocks; 
0010 FIG. 6 illustrates an optimized initialization vectors 
generation of two data blocks, as involved in embodiments of 
the invention; and 
0011 FIG. 7 schematically represents a general purpose 
computerized system, Suited for implementing methods 
according to embodiments. 

Nov. 5, 2015 

DETAILED DESCRIPTION 

0012. According to a first aspect, the present invention is 
embodied as a computer-implemented method of encryption 
of several units of a computerized system, wherein each of the 
units comprises data, the method comprising: generating dis 
tinct initialization vectors, or IVs, for the units, and storing 
the generated IVs; and for each unit of the several units: 
accessing a stored IV corresponding to the unit; and encrypt 
ing the unit according to the accessed IV and an encryption 
key. 
0013. In embodiments, storing the generated IVs com 
prises storing the generated IVs on an IV cache memory, and 
accessing, for each unit of the several units, a stored IV. 
comprises accessing the stored IV from the IV cache memory. 
0014 Generating the distinct IVs for the units comprises 
generating an IV for each of the units, respectively. 
0015. In embodiments, generating the distinct IVs com 
prises checking, for each of the units and prior to generating 
an IV for each of the units, whether an IV is already available 
for the each of the units; and if it is determined that an IV is 
already available for a given unit, skipping the generation of 
a corresponding IV. 
0016 Preferably, the method further comprises, prior to 
generating the IVs: instantiating an IV-generating cipher, and 
generating the distinct IVs is carried out using the instantiated 
IV-generating cipher. 
0017. In embodiments, each of the IVs is generated based 
on a tweak that comprises a unit identifier, and accessing a 
stored IV corresponding to a given unit is performed based on 
that same tweak. 
0018. According to another aspect, the invention is 
embodied as a computer-implemented method of decryption 
of several units, which have been encrypted according to a 
method according to any one of the above embodiments, the 
decryption method comprising, for each unit of the several 
units to be decrypted: accessing a stored IV corresponding to 
the unit, decrypting the unit according to the accessed IV and 
an encryption key that was used for encrypting the unit. 
0019. In exemplary embodiments, the method further 
comprises, prior to accessing any of the stored IVs: re-gen 
erating at least some of the IVs for the units and storing the 
re-generated IVs. 
0020. At least some of the IVs are already stored on an IV 
cache memory and the at least some of the IVs are accessed 
from the IV cache memory for Subsequently decrypting the 
corresponding units. 
0021. In embodiments, each of the IVs is generated, prior 
to storing it, by means of electronic codebook encryption. 
0022. Each of the IVs is generated, prior to storing it, 
combining a unit offset, indicating an offset of a correspond 
ing unit, and a randomly generated value. Encrypting or 
decrypting a unit uses an Xor-encrypt-Xor (XEX), or XEX 
based tweaked-codebook mode with ciphertext stealing 
(XTS) encryption mode with a block cipher. 
0023. According to still another aspect, the invention is 
embodied as a computerized system configured for encrypt 
ing several units, wherein each of the units comprises data, 
the system comprising: an initialization vectors generating 
component for generating initialization vectors, or IVs, for 
the units, a memory, coupled to the initialization vectors 
generating component, for storing the generated IVs; an 
encryption and/or decryption component coupled to the 
memory to access, for each unit of the several units, a stored 
IV corresponding to the unit and encrypt or decrypt the unit 



US 2015/03 18984 A1 

according to the accessed IV and an encryption key. The 
memory is preferably a cache memory. 
0024. According to a final aspect, the invention is embod 
ied as a computer program product for encrypting and/or 
decrypting several units of a computerized system, the com 
puter program product comprising a computer-readable stor 
age medium having computer-readable program code 
embodied therewith, the computer-readable program code 
configured to implement the method according to any one of 
the embodiments above. 
0025 Systems and methods embodying the present inven 
tion will now be described, by way of non-limiting examples, 
and in reference to the accompanying drawings. 
0026. A core idea of this invention is to decouple the IV 
generation phase from the encryption or the decryption phase, 
whereas the IV generation phase is, in the prior systems, 
always tightly coupled with the encryption/decryption of 
each single data unit (e.g., blocks), see e.g., NIST Special 
Publication 800-38A. Recommendation for Block Cipher 
Modes of Operation. Methods and Techniques, http://csrc. 
nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf. 
0027. In reference to FIG. 1, an aspect of the invention is 

first described, which concerns a computer-implemented 
method of encryption of data units of a computerized system. 
Most basically, this method revolves around two main opera 
tions. During a first operation, distinct initialization vectors 
(also sometimes referred to as “initialization vectors” and 
hereafter denoted by “IVs) are generated, operation S20 (see 
also operation S26 in FIG. 2), for the units. The generated IVs 
can then be stored, operation S27. During a second main 
operation, a loop is performed over each unit. Namely, for 
each unit: a stored IV that corresponds to the unit is accessed, 
operation S12, and the unit is encrypted S13 according to: (i) 
the corresponding IV accessed, and (ii) an encryption key. 
0028. The IV generation phase is accordingly decoupled 
from the encryption phase, contrary to the usual approaches. 
Present inventors have realized that the former approaches 
were time consuming and Suboptimal and that the IV genera 
tion could in fact be decoupled from the encryption (or 
decryption) phase, that is, the IV generation could be per 
formed outside the unit encryption loop. 
0029. For instance, and as discussed below in more detail: 
when a cipher-based derivation of IVs is contemplated, the 
schemes proposed herein lead to Substantial performance 
gains (typically 5 to 20%, or more, depending on hardware 
and workloads). For instance, embodiments of the present 
invention break the classic pattern of (i) instantiate cipher; (ii) 
derive IVs; (iii) encrypt units, and instead propose a novel 
pattern which allows the processing of several units to be 
merged altogether. 
0030 This new approach is motivated by realizing that 
most calls to encryption in a filesystem may be for large units 
of data (e.g., a filesystem block size, which would for instance 
be 256 KB in GPFS by default). Such embodiments happen to 
save CPU-time at the price of a small increase in memory 
consumption. Embodiments proposed herein may accord 
ingly involve: 
0031 (i) A one-time instantiation of an IV-generating 
cipher; 
0032 (ii) A bulk derivation of all IVs of interest, i.e., IVs 
needed for all encryption units, which are then stored into an 
IV memory cache; and 

Nov. 5, 2015 

0033 (iii) For each unit: 
0034) a. Perform a fast lookup of the corresponding IV 
from the IV cache; 
0035) b. Instantiate the cipher; and 
0036 c. Encrypt this unit. 
0037. This results in significantly improved throughput 
and latency, and incidentally less CPU consumption and 
therefore less power consumption. 
0038. Note that a “unit as used herein can be a file, a disk 
sector, a memory page, a buffer, or more generally any Suit 
able data grain. Embodiments of the invention can be applied 
notably to GPFS systems, i.e., data units are typically units of 
a filesystem. 
0039. The unit encryption mode can be, for example, the 
so-called CBC-IV (for cipher block chaining with an IV), 
XTS (extended tweakable cipher), or any mode making use of 
either tweaks and/or IVs. If an encryption mode such as XTS 
is used, which directly uses a tweak and internally generates 
IVs, the present methods can still be applied internally (i.e., 
directly within the software or hardware that implements the 
encryption functionality) to the encryption mode. 
0040 Encrypting or decrypting a unit uses the XEX 
encryption mode (i.e., Xor-encrypt-Xor) or the XTS encryp 
tion mode (i.e., XEX-based tweaked-codebook mode with 
ciphertext stealing), with a block cipher. Any suitable block 
cipher can be contemplated e.g., AES (advanced encryption 
standard), DES (data encryption standard), Triple DES, etc. 
In XTS mode, a unit identifier (e.g., a sector offset) is also 
encrypted using the block cipher, prior to being Galois-field 
multiplied with an offset and xored to a plaintext or cipher 
text. Applying the present methods may, in that respect, result 
in optimizing the encryption of the unit offset by grouping 
many such encryption operations. 
0041 Referring now to FIG. 2: as evoked above, the gen 
erated IVs are stored S27 on a cache memory, to allow for 
quick look-up of IVs. Consistently, IVs are Subsequently 
accessed S12 from the IV cache memory, when needed for 
encrypting/decrypting the units. Using a cache, e.g., a 
memory tightly coupled to processor(s) executing instruc 
tions in accordance with operations discussed herein, makes 
sense inasmuch as the IVs are generated beforehand (other 
wise it would not). This greatly accelerates the encryption/ 
decryption processes. 
0042. In embodiments, distinct IVs are generated S26 for 
each of the units. A 1-to-1 mapping of IVs to data units is 
preferred, for security reasons. Otherwise, it would be pos 
sible that a same ciphertext results for two identical data units. 
As a result of using distinct IVs, two units having same 
contents result in different cipher texts. 
0043. As further illustrated in FIG. 2, the IV generation 
operation S26 preferably comprises checking (operation 
S22), for each unit (and prior to generating an IV for this unit), 
whether an IV is already available for that unit. A relevant IV 
may already have been generated and stored, e.g., in cache, 
owing to the preferred approaches discussed herein. If it is 
determined that an IV is already available, then the generation 
of this IV is skipped, and the process may then select a next 
unit, operation S21. 
0044 As evoked earlier, embodiments of the present 
methods may further comprise, prior to generating the IVs, 
instantiating S24 an IV-generating cipher, as reflected in FIG. 
2. The Subsequent generation of the IVs may accordingly be 
carried out using the instantiated IV-generating cipher. 



US 2015/03 18984 A1 

0045. In variants, an IV-generating cipher (also called IV 
deriving cipher) can be instantiated for each unit, instead of 
being instantiated beforehand. Note that a distinction should 
be made between: (i) the IV-generating cipher and (ii) a data 
encrypting cipher (the latter being also involved, in embodi 
ments), as discussed below. Using an IV-generating cipher is 
advantageous, compared to a hash function, as it allows for 
optimally generating all the necessary IVs beforehand, while 
requiring only one instantiation of the cipher. Using a hash 
function or a similar function would instead require to re 
instantiate the hash function for each IV to be generated. 
0046 Embodiments that involve an a priori instantiation 
ofan IV-generating cipher (as in FIG.2), differ from solutions 
as proposed in e.g., US20130 136256A1, where use is made 
of an IV to generate another IV. Yet, not all the necessary IVs 
are stored before the encryption loop, i.e., outside the loop 
and prior to the encryption loop. In this solution, the use of 
hashing anyway prevents the generation of all the necessary 
IVs beforehand in one shot. Furthermore, this solution does 
not make explicit the mapping between the final IVs and the 
blocks. 
0047. Now, and beside the IV-generating cipher, present 
methods may further comprise instantiating a data-encrypt 
ing cipher, e.g., a data encryption key (as assumed in FIG. 1), 
before the encryption loop. A data encryption key may be, for 
example, a key or a key Schedule associated with an encrypt 
ing function. Different keys are typically used for the IV 
generating cipher and the data encrypting cipher. 
0048. As further seen in FIG. 2, a tweak may advanta 
geously be used as input to generate IVs, operation S26. 
Correspondingly, a stored IV can be accessed (operation S12 
in FIG. 1) using that same tweak (though the use of this tweak 
is not explicitly shown in FIG. 1). Preferably, this tweak is, 
comprises or is based on a unit identifier, e.g., a number 
combining a unit offset and a randomly generated value. The 
advantage is that this identifier is typically already available 
when encrypting/decrypting and therefore there is no need to 
create distinct unique values. In variants, the unit identifier 
may comprise or consist of a unit offset or a sequence number, 
or still any unique random value mapped onto a given unit, or 
still the combination of a unit identifier and any random value, 
or more generally, any value that Suitably be used to identify 
a unit. 
0049 Referring now to FIG. 3, and according to another 
aspect, the invention can be embodied as a method of decryp 
tion of data units, i.e., that have been encrypted according to 
the above methods. Consistently with the above encryption 
methods, this decryption method most generally comprises 
two main operations: 
0050 (i) For each unit to be decrypted: a stored IV that 
corresponds to this unit is accessed S32; and 
0051 (ii) This unit is decrypted S33 according to the 
accessed IV (as well as a data encryption key that was used for 
encrypting the unit). 
0.052 For the same reasons as discussed above, IVs are 
preferably stored on an IV cache. Thus, at least some of the 
IVs are already stored on an IV cache memory and these can 
be accessed S32 from cache for subsequently decrypting S33 
the corresponding units. 
0053. Notwithstanding the above considerations, present 
inventors have realized that in may be advantageous, in some 
cases, to re-generate at least some of the IVs (and accordingly 
store the re-generated IVs). IV regeneration may indeed be 
advantageous in those cases where it turns out to be more 

Nov. 5, 2015 

efficient to re-generate some of the IVs rather than finding out 
which IVs should be generated. For instance, an IV may have 
been generated for unit identifier number 1001 and 1003 in 
the past, but it is now necessary to generate IVs for unit 
identifiers 1000, 1001, 1002, 1003 and 1004. In some imple 
mentations and hardware, it may be faster to generate IVs for 
all such units (therefore, also regenerating IVs for units 1001 
and 1003), instead of individually generating IVs 1000, 1002 
and 1004. 
0054 The IVs are preferably generated by means of elec 
tronic codebook encryption (or ECB encryption). Especially 
in that case and as noted above, an IV is preferably generated 
S26 by combining a unit offset, i.e., indicating an offset of the 
corresponding unit, and a randomly generated value. A ran 
domly generated value may be unique to a group of units only 
(e.g., all units within a file), while the unit offsets guarantee 
that each generated IV is unique. 
0055 An example of ECB encryption of two blocks (using 
a 16-byte-block cipher such as AES) is given in FIG. 4. When 
encrypting two 16-byte blocks of same content (both 
“AAAABBBBCCCCDDDD”), one ECB encryption pass 
will result in two 16-byte blocks with identical content 
(“KELWKTOEWLFRPORD). 
0056. In contrast, one can individually encrypt each block 
by directly making use of the underlying block cipher, as seen 
in FIG.5. This results in two individual calls to the encryption 
function, which may duplicate some one-time costs (such as 
creating a key schedule for AES). 
0057. In variants to ECB encryption, any pseudo-random 
function (PRF) could be used to generate the IVs (such func 
tions require an additional key). This can for instance be a 
symmetric cipher Such as AES, using methods such as Cipher 
block chaining (CBC) or encrypted salt-sector initialization 
vector (ESSIV). Furthermore, a unique random value could 
be used as an IV directly. 
0.058 FIG. 5 illustrates a basic initialization vectors gen 
eration process for two units: one with unit identifier 
0x01020304, and the other with unit identifier 0x01020305. 
By making two individual calls to the underlying block cipher 
encryption function, one may duplicate initialization costs for 
this block cipher. In addition, by performing the IV genera 
tion, followed by encryption of the data, and followed once 
again by and IV generation phase and followed again by 
encryption of the data, can have detrimental effects on the 
instruction cache of the CPU (central processing unit). 
0059 FIG. 6 illustrates an optimized initialization vectors 
generation of two data blocks, as involved in embodiments. 
Namely, by using ECB mode directly, one can generate IVs 
for both units “simultaneously’, resulting in performance 
improvements. 
0060 Next, and according to a further aspect, the inven 
tion can be embodied as a computerized system configured 
for encrypting/decrypting data units, i.e., a system allowing 
present methods to be implemented. Sucha system comprises 
essentially three components: (i)an IV generating component 
for generating IVs, for the units, (ii) a memory, coupled to the 
IV generating component, storing IVs generated for the units: 
and (iii) an encryption and/or decryption component coupled 
to the memory to access, for each unit to be encrypted/de 
crypted, a stored IV corresponding to the unit and encrypt or 
decrypting the unit according to the accessed IV and an 
encryption key. (The mapping is preferably 1-to-1: a require 
ment for secure encryption is to not reuse IVs). In embodi 
ments, and as touched earlier, the memory is a cache memory. 



US 2015/03 18984 A1 

An exemplary system 100 is described in detail in the next 
section, in reference to FIG. 7. 
0061 Finally, and according to still another aspect, the 
invention can be embodied as a computer program product 
for encrypting and/or decrypting several data units, compris 
ing a computer-readable storage medium having computer 
readable program code embodied therewith, where this com 
puter-readable program code is configured to implement 
operations as described above, and notably in reference to 
FIGS. 1-3. Suitable code may notably include the IV gener 
ating component and the encryption and/or decryption com 
ponent discussed above. Such computer program product can 
be used on a computerized system such as described above. 
0062. The above embodiments have been succinctly 
described in reference to the accompanying drawings and 
may accommodate a number of variants. Several combina 
tions of the above features may be contemplated. Examples 
are given below: 
0063 For instance, embodiments may involve the follow 
ing combination of operations (for encryption): (i) a one-time 
instantiation of an IV-generating cipher (as assumed in FIG. 
2); (ii) a bulk derivation of all IVs of interest, i.e., IVs needed 
for all encryption units, which are then stored into an IV 
memory cache (as assumed in FIG. 2); and (iii) for each unit: 
(a) perform a fast lookup of the corresponding IV from the IV 
cache; (b) instantiate cipher (as assumed, though not explic 
itly shown in FIG. 1); and (c) encrypt this unit (as shown in 
FIG. 1). 
0064. For instance, the system 100 depicted in FIG. 1 
schematically represents a computerized unit 101, e.g., a 
general-purpose computer, which may be configured to 
implement aspects of this invention. In exemplary embodi 
ments, interms of hardware architecture and as shown in FIG. 
1: the unit 101 includes a processor 105, memory 110 coupled 
to a memory controller 115, and one or more input and/or 
output (I/O) devices 140,145, 150, 155 (or peripherals) that 
are communicatively coupled via a local input/output con 
troller 135. The input/output controller 135 can be, but is not 
limited to, one or more buses or other wired or wireless 
connections, as is known in the art. The input/output control 
ler 135 may have additional elements, which are omitted for 
simplicity, such as controllers, buffers (caches), drivers, 
repeaters, and receivers, to enable communications. Further, 
the local interface may include address, control, and/or data 
connections to enable appropriate communications among 
the aforementioned components. 
0065. The processor 105 is a hardware device for execut 
ing software, particularly that stored in memory 110. This 
memory may for instance be loaded with computer-readable 
program code Such as described above, i.e., for implementing 
operations of the present methods. Such code may notably 
exhibit two functionally distinct modules: one for generating 
IVs and another one for performing the encryption and/or 
decryption operations discussed above, which modules are 
suitably coupled to enable embodiments of this invention. 
The processor 105 can be any custom made or commercially 
available processor, a central processing unit (CPU), an aux 
iliary processor among several processors associated with the 
computer 101, a semiconductor based microprocessor (in the 
form of a microchip or chip set), or generally any device for 
executing Software instructions. 
0066. The memory 110 can include any one or combina 
tion of Volatile memory elements (e.g., random access 
memory) and nonvolatile memory elements. Moreover, the 

Nov. 5, 2015 

memory 110 may incorporate electronic, magnetic, optical, 
and/or other types of storage media. Note that the memory 
110 can have a distributed architecture, where various com 
ponents are situated remote from one another, but can be 
accessed by the processor 105. The memory may notably 
include a memory cache, closer to the processor 105, to store 
and quickly recall the generated IVs, as discussed in the 
previous section. 
0067. The software in memory 110 may include one or 
more separate programs, each of which comprises an ordered 
listing of executable instructions for implementing logical 
functions. In the example of FIG. 1, the software in the 
memory 110 may include methods described herein in accor 
dance with exemplary embodiments, as well as a Suitable 
operating system (OS) 111. The OS 111 essentially controls 
the execution of other computer programs, such as those 
implementing methods as described herein (e.g., FIGS. 1-3), 
and provides scheduling, input-output control, file and data 
management, memory management, and communication 
control and related services. Note that in embodiments, the 
present methods may be executed by the OS itself, or still, by 
a firmware. 
0068 Possibly, a conventional keyboard 150 and mouse 
155 can be coupled to the input/output controller 135 (in 
particular for the BS, if needed). Other I/O devices 140-155 
may be provided. In addition, the I/O devices 140-155 may 
further include devices that communicate both inputs and 
outputs. The system 100 can further include a display con 
troller 125 coupled to a display 130. In exemplary embodi 
ments, the system 100 can further include a network interface 
or transceiver 160 for coupling to a network 165. The network 
165 transmits and receives data between the unit 101 and 
external systems. The network 165 is possibly implemented 
in a wireless fashion, e.g., using wireless protocols and tech 
nologies, such as WiFi, WiMax, etc. The network 165 may be 
a fixed wireless network, a wireless local area network 
(LAN), a wireless wide area network (WAN) a personal area 
network (PAN), a virtual private network (VPN), intranet or 
other Suitable network system and includes equipment for 
receiving and transmitting signals. 
0069. If the unit 101 is a PC, workstation, intelligent 
device or the like, the software in the memory 110 may further 
include a basic input output system (BIOS). The BIOS is 
stored in ROM so that the BIOS can be executed when the 
computer 101 is activated. 
(0070. When the unit 101 is in operation, the processor 105 
is configured to execute Software stored within the memory 
110, to communicate data to and from the memory 110, and to 
generally control operations of the computer 101 pursuant to 
the software. The methods described herein and the OS 111, 
in whole or in part are read by the processor 105, typically 
buffered within the processor 105, and then executed. When 
the methods described herein are implemented in software, 
the methods can be stored on any computer readable medium, 
Such as storage 120, for use by or in connection with any 
computer related system or method. 
0071. The present invention may be a system, a method, 
and/or a computer program product. The computer program 
product may include a computer readable storage medium (or 
media) having computer readable program instructions 
thereon for causing a processor to carry out aspects of the 
present invention. 
0072 The computer readable storage medium can be a 
tangible device that can retain and store instructions for use 



US 2015/03 18984 A1 

by an instruction execution device. The computer readable 
storage medium may be, for example, but is not limited to, an 
electronic storage device, a magnetic storage device, an opti 
cal storage device, an electromagnetic storage device, a semi 
conductor storage device, or any Suitable combination of the 
foregoing. A non-exhaustive list of more specific examples of 
the computer readable storage medium includes the follow 
ing: a portable computer diskette, a hard disk, a random 
access memory (RAM), a read-only memory (ROM), an eras 
able programmable read-only memory (EPROM or Flash 
memory), a static random access memory (SRAM), a por 
table compact disc read-only memory (CD-ROM), a digital 
versatile disk (DVD), a memory stick, a floppy disk, a 
mechanically encoded device Such as punch-cards or raised 
structures in a groove having instructions recorded thereon, 
and any suitable combination of the foregoing. A computer 
readable storage medium, as used herein, is not to be con 
Strued as being transitory signals perse, such as radio waves 
or other freely propagating electromagnetic waves, electro 
magnetic waves propagating through a waveguide or other 
transmission media (e.g., light pulses passing through a fiber 
optic cable), or electrical signals transmitted through a wire. 
0073 Computer readable program instructions described 
herein can be downloaded to respective computing/process 
ing devices from a computer readable storage medium or to 
an external computer or external storage device via a network, 
for example, the Internet, a local area network, a wide area 
network and/or a wireless network. The network may com 
prise copper transmission cables, optical transmission fibers, 
wireless transmission, routers, firewalls, Switches, gateway 
computers and/or edge servers. A network adapter card or 
network interface in each computing/processing device 
receives computer readable program instructions from the 
network and forwards the computer readable program 
instructions for storage in a computer readable storage 
medium within the respective computing/processing device. 
0074 Computer readable program instructions for carry 
ing out operations of the present invention may be assembler 
instructions, instruction-set-architecture (ISA) instructions, 
machine instructions, machine dependent instructions, 
microcode, firmware instructions, state-setting data, or either 
Source code or object code written in any combination of one 
or more programming languages, including an object ori 
ented programming language such as Java, Smalltalk, C++ or 
the like, and conventional procedural programming lan 
guages, such as the C programming language or similar pro 
gramming languages. The computer readable program 
instructions may execute entirely on the users computer, 
partly on the user's computer, as a stand-alone software pack 
age, partly on the user's computer and partly on a remote 
computer or entirely on the remote computer or server. In the 
latter scenario, the remote computer may be connected to the 
user's computer through any type of network, including a 
local area network (LAN) or a wide area network (WAN), or 
the connection may be made to an external computer (for 
example, through the Internet using an Internet Service Pro 
vider). In some embodiments, electronic circuitry including, 
for example, programmable logic circuitry, field-program 
mable gate arrays (FPGA), or programmable logic arrays 
(PLA) may execute the computer readable program instruc 
tions by utilizing State information of the computer readable 
program instructions to personalize the electronic circuitry, in 
order to perform aspects of the present invention. 

Nov. 5, 2015 

0075 Aspects of the present invention are described 
herein with reference to flowchart illustrations and/or block 
diagrams of methods, apparatus (systems), and computer pro 
gram products according to embodiments of the invention. It 
will be understood that each block of the flowchart illustra 
tions and/or block diagrams, and combinations of blocks in 
the flowchart illustrations and/or block diagrams, can be 
implemented by computer readable program instructions. 
0076. These computer readable program instructions may 
be provided to a processor of a general purpose computer, 
special purpose computer, or other programmable data pro 
cessing apparatus to produce a machine, such that the instruc 
tions, which execute via the processor of the computer or 
other programmable data processing apparatus, create means 
for implementing the functions/acts specified in the flowchart 
and/or block diagram block or blocks. These computer read 
able program instructions may also be stored in a computer 
readable storage medium that can direct a computer, a pro 
grammable data processing apparatus, and/or other devices to 
function in a particular manner, Such that the computer read 
able storage medium having instructions stored therein com 
prises an article of manufacture including instructions which 
implement aspects of the function/act specified in the flow 
chart and/or block diagram block or blocks. 
0077. The computer readable program instructions may 
also be loaded onto a computer, other programmable data 
processing apparatus, or other device to cause a series of 
operations to be performed on the computer, other program 
mable apparatus or other device to produce a computer imple 
mented process, such that the instructions which execute on 
the computer, other programmable apparatus, or other device 
implement the functions/acts specified in the flowchart and/or 
block diagram block or blocks. 
0078. The flowchart and block diagrams in the Figures 
illustrate the architecture, functionality, and operation of pos 
sible implementations of systems, methods, and computer 
program products according to various embodiments of the 
present invention. In this regard, each block in the flowchart 
or block diagrams may represent a module, segment, or por 
tion of instructions, which comprises one or more executable 
instructions for implementing the specified logical function 
(s). In some alternative implementations, the functions noted 
in the block may occur out of the order noted in the figures. 
For example, two blocks shown in Succession may, in fact, be 
executed Substantially concurrently, or the blocks may some 
times be executed in the reverse order, depending upon the 
functionality involved. It will also be noted that each block of 
the block diagrams and/or flowchart illustration, and combi 
nations of blocks in the block diagrams and/or flowchart 
illustration, can be implemented by special purpose hard 
ware-based systems that perform the specified functions or 
acts or carry out combinations of special purpose hardware 
and computer instructions. 
(0079 While the present invention has been described with 
reference to a limited number of embodiments, variants and 
the accompanying drawings, it will be understood by those 
skilled in the art that various changes may be made and 
equivalents may be substituted without departing from the 
Scope of the present invention. In particular, a feature (device 
like or method-like) recited in a given embodiment, variant or 
shown in a drawing may be combined with or replace another 
feature in another embodiment, variant or drawing, without 
departing from the scope of the present invention. Various 
combinations of the features described in respect of any of the 



US 2015/03 18984 A1 

above embodiments or variants may accordingly be contem 
plated, that remain within the scope of the appended claims. 
In addition, many minor modifications may be made to adapt 
a particular situation or material to the teachings of the 
present invention without departing from its scope. There 
fore, it is intended that the present invention not be limited to 
the particular embodiments disclosed, but that the present 
invention will include all embodiments falling within the 
Scope of the appended claims. In addition, many other vari 
ants than explicitly touched above can be contemplated. 

1. A computer-implemented method of encryption of sev 
eral units of a computerized system, wherein each of the units 
comprises data, the method comprising: 

generating distinct initialization vectors, or IVs, for the 
units, and storing the generated IVs; and 

for each unit of the several units: 
accessing a stored IV corresponding to the unit; and 
encrypting the unit according to the accessed IV and an 

encryption key. 
2. The method of claim 1, wherein storing the generated 

IVs comprises storing the generated IVs on an IV cache 
memory, and wherein accessing, for each unit of the several 
units, a stored IV, comprises accessing the stored IV from the 
IV cache memory. 

3. The method of claim 1, wherein generating the distinct 
IVs for the units comprises generating an IV for each of the 
units, respectively. 

4. The method of claim 3, wherein generating the distinct 
IVs comprises checking, for each of the units and prior to 
generating an IV for each of the units, whether an IV is 
already available for the each of the units; and if it is deter 
mined that an IV is already available for a given unit, skipping 
the generation of a corresponding IV. 

5. The method according to claim 1, further comprising, 
prior to generating the IVs: instantiating an IV-generating 
cipher, and wherein generating the distinct IVs is carried out 
using the instantiated IV-generating cipher. 

Nov. 5, 2015 

6. The method according to claim 1, wherein each of the 
IVs is generated based on a tweak that comprises a unit 
identifier, and whereinaccessing a stored IV corresponding to 
a given unit is performed based on that same tweak. 

7. A computer-implemented method of decryption of sev 
eral units, which have been encrypted according to the 
method of claim 1, the method comprising, for each unit of 
the several units to be decrypted: 

accessing a stored IV corresponding to the unit; and 
decrypting the unit according to the accessed IV and an 

encryption key that was used for encrypting the unit. 
8. The method of claim 7, further comprising, prior to 

accessing any of the stored IVs: re-generating at least Some of 
the IVs for the units and storing the re-generated IVs. 

9. The method of claim 7, wherein at least some of the IVs 
are already stored on an IV cache memory and the at least 
some of the IVs are accessed from the IV cache memory for 
Subsequently decrypting the corresponding units. 

10. The method of claim 1, wherein each of the IVs is 
generated, prior to storing it, by electronic codebook encryp 
tion. 

11. The method of claim 10, wherein each of the IVs is 
generated, prior to storing it, combining a unit offset, indicat 
ing an offset of a corresponding unit, and a randomly gener 
ated value. 

12. The method of claim 1, wherein encrypting or decrypt 
ing a unit uses one of an Xor-encrypt-Xor (XEX) or an XEX 
based tweaked-codebook mode with ciphertext stealing 
(XTS) encryption mode with a block cipher. 

13. A computer program product for encrypting and/or 
decrypting several units of a computerized system, the com 
puter program product comprising a computer-readable Stor 
age medium having computer-readable program code 
embodied therewith, the computer-readable program code 
configured to implement the method according to claim 1. 

k k k k k 


